

Multilevel Assessment of Seagrass Response to Thermal Stress: Stress Memory and Epigenetic Changes

Hung Manh Nguyen

Hung Manh Nguyen

Multilevel Assessment of Seagrass Response to Thermal Stress: Stress Memory and Epigenetic Changes

Doctor of Philosophy

Biology

Open University UK

School of Life, Health and Chemical Sciences

Stazione Zoologica Anton Dohrn

Department of Integrative Marine Ecology

Director of studies

Dr. Gabriele Procaccini

Stazione Zoologica Anton Dohrn Department of Integrative Marine Ecology Villa Comunale 80121 Napoli Italy

Supervisors

Dr. Lázaro Marín-Guirao

Spanish Institute of Oceanography Oceanographic Center of Murcia San Pedro del Pinatar 30740 Murcia Spain

Dr. Mathieu Pernice

University of Technology Sydney Climate Change Cluster Ultimo 2007 Sydney Australia

October 2021

Abstract

Seagrasses are being threatened globally due to human-induced environmental changes with ocean warming being one of the main players. A better understanding of the interaction between seagrasses and warming is, therefore, crucial to secure a sustainable future for these paramount foundation species.

Through a literature review and a series of *ad hoc* mesocosm and field experiments using four seagrass species from the northern (i.e. Mediterranean: *Posidonia oceanica, Cymodocea nodosa*) and southern (i.e. Australia: Posidonia australis and Zostera muelleri) hemisphere and by applying multi- and inter-disciplinary approaches [i.e. photo-physiology, growth, pigments, gene expression (RT-qPCR and RNA-seq), and genome screening (ddRADseq)], here I (i) identify potential commonalities in the effects of warming and the responses of seagrasses across different levels ranging from molecular to planetary [e.g. warming strongly affects seagrasses at all levels while seagrass responses diverge amongst species, populations and over depths]; (ii) demonstrate the existence of thermal stress memory for the first time in seagrasses [e.g. non-primed plants suffered significant reduction in photosynthetic capacity, leaf growth and pigments content, while heatprimed plants were able to cope better with recurrent stressful events]; (iii) reveal the molecular mechanisms that potentially govern the formation (priming phase) and activation (memory phase) of thermal stress memory in seagrasses [e.g. response to warming of non-primed plants required the involvement of several cellular compartments and processes while in heat-primed plants the response focused on a more limited group of processes]; (*iv*) explore the involvement of epigenetic modifications (DNA methylation and histone modifications in particular) in thermal stress response and thermal stress memory in seagrasses [e.g. results from gene expression analyses demonstrated a high activation of genes related to epigenetic modifications and thermal stress memory during the triggering event in both heat-primed and non-primed plants]; (v) broaden our knowledge in interspecific divergences in response to warming among seagrass species (northern versus southern hemisphere seagrasses and climax versus pioneer species) [e.g. results showed that northern hemisphere *Posidonia* better dealt with warming than its southern hemisphere counterpart and, in both hemispheres, pioneer seagrasses were more thermal tolerant than climax ones]; (vi) investigate the molecular basis of local adaptation to high temperature condition in seagrasses [e.g. ddRADseq data analysis identified several outlier loci potentially responsible for thermal stress response and epigenetics]; and finally (*vii*) suggest future directions for seagrass research [e.g. studies involving additional species and populations, investigation of the seagrass holobiont, seagrasses as a solution to mitigate climate change among others].

This thesis provides novel insights into the field of seagrass ecology and yields potential implications for future seagrass conservation and restoration activities in an era of ocean warming.

Keywords: Seagrass, Posidonia oceanica, Cymodocea nodosa, Posidonia australis, Zostera muelleri, Marine heatwave, Heat stress, Stress memory, Epigenetics.