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The formation of the ocean’s 
anthropogenic carbon reservoir
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The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. 
This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate 
this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry 
in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas 
exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 
of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a 
dominant component in the formation of subpolar waters and that these water masses essentially form 
a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as 
it by construction only considers the velocity or transport of waters across isopycnals. More generally, 
our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry.

High quality measurements demonstrate that the oceans have absorbed about a third of anthropogenic CO2 (Cant) 
emissions1,2. However our understanding of the mechanisms governing this uptake are quite elementary. The 
air-sea exchange of Cant should be expected to play a first-order role in determining the rate of exchange of Cant 
across the base of the ocean’s planetary boundary layer or mixed layer. This mainly occurs in the Equatorial region 
and mid-to-high latitudes3. Previous efforts such as model-data synthesis using inverse techniques3–7 have investi-
gated meridional transport of water and Cant in an Eulerian framework. This work tended to emphasize the role of 
Cant uptake associated with the Southern Ocean divergence. Recent attention has been devoted to the relationship 
between anthropogenic heat and carbon uptake by the ocean8,9. None of this research to date has articulated a 
mechanistic framework linking ocean uptake of carbon to thermodynamic processes associated with the ocean 
overturning. Here we develop such a framework based on previous efforts to understand oceanic carbon uptake 
pathways10–13, with special focus on the shallow overturning circulation (SOC).

The SOC includes overturning of tropical waters (TW), subtropical mode waters (STMW) and subpolar 
mode waters (SPMW), primarily Subantarctic Mode Water (SAMW)14 (see Fig. 1). Observations indicate that the 
waters with densities characteristic of the SOC (σ  <  27.0) and intermediate waters (IW; 27.0 ≤  σ  <  27.5) contain 
as much as 63–83% of the global Cant inventory, yet occupy only 27.1% of the global ocean volume (Fig. 2 and 
Supplementary Fig. 1, Table 1). The range depends on the method used to estimate Cant concentrations at the time 
of WOCE1,15,16. To understand the higher efficiency of these water masses in retaining Cant we must first under-
stand the formation mechanism(s) of this reservoir. This exercise is particularly important considering the much 
shorter times scales of re-emergence into the surface layer (thereby inhibiting further Cant uptake) of these water 
masses as compared to deeper water masses. In addition, they contribute a much lower fraction to the total Cant 
inventory relative to what would be expected given their the large surface area of their outcrop regions (94.8%; 
Fig. 2, Table 1). The apparent mismatch between a large area available for air-sea exchange and a relatively small 
interior inventory for Cant suggests that (a) air-sea Cant fluxes are small in the tropics relative to high latitudes, (b) 
Cant is exported from the lighter layers to denser water masses, or both.

We present here a novel suite of analysis tools that aim to deconvolve the roles of gas exchange, ocean interior 
diapycnal transports, and ocean interior diapycnal diffusive exchanges in prescribing how the ocean interior 
Cant reservoir is formed. We identify a central role for poleward ocean transport of Cant, related to the pole-
ward transport of heat associated with the SOC. This transport sustains a strong exchange of Cant between 
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