Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014

Paola Rivaro, a,⁎ Carmela Ianni, a Leonardo Langone, b Carlo Ori, b Giuseppe Aulici, c Yuri Cotroneo, c Maria Saggiomo, d Olga Mangoni e

a Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
b National Research Council of Italy, Institute of Marine Sciences, Via Gabetti 101, 40129 Bologna, Italy
c Department of Science and Technology, Parthenope University, Centro Direzionale, Isola C4-180143 Napoli, Italy
d Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
e Department of Biology, University of Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy

A R T I C L E I N F O

Article history:
Received 4 June 2015
Received in revised form 26 October 2015
Accepted 4 November 2015
Available online xxxx

Keywords:
Ross Sea
Mesoscale
Carbonate system
CO2 sea–air flux
Biological activity
Phytoplankton pigments

A B S T R A C T

Water samples (0–200 m) were collected in a coastal area of the Ross Sea in January 2014 to evaluate the physical and biological forcing on the carbonate system at the mesoscale (distance between stations of 5–10 km). Remote sensing supported the determination of the sampling strategy and helped positioning each sampling station. Total alkalinity, pH, dissolved oxygen, phytoplankton pigments and composition were investigated in combination with measurements of temperature, salinity and current speed. Total inorganic carbon, sea water CO2 partial pressure and the saturation state (Ω) for calcite and aragonite were calculated from the measured total alkalinity and pH. In addition, continuous measurements of atmospheric CO2 concentration were completed. LADCP measurements revealed the presence of a significant change in current speed and direction that corresponded to a clearly defined front characterized by gradients in both temperature and salinity. Phytoplankton biomass was relatively high at all stations and the highest values of chlorophyll-a were found between 20 to 50 m, with the dominant taxonomic group being haptophyceae. The carbonate system properties in surface waters exhibited mesoscale variability with a horizontal length scale of about 10 km. Sea-ice melt, through the input of low salinity water, results in a dilution of the total alkalinity and inorganic carbon, but our observations suggest that phytoplankton activity was the major forcing of the distribution of the carbonate system variables. Higher CO3−, Ω and pH in the surface layer were found where the highest values of chlorophyll-a were observed. The calculated ΔpCO2 pattern follows both MODIS data and in situ chlorophyll-a measurements, and the estimated CO2 fluxes ranged from ~0.5 ± 0.4 to ~31.0 ± 6.4 mmol m−2 d−1. The large range observed in the fluxes is due to both the spatial variability of sea water pCO2 and to the episodic winds experienced.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Ross Sea is one of the most productive regions of the Southern Ocean, exhibiting high levels of biomass and primary production, and high flows of biogenic material accumulations on the continental shelf (Armand et al., 2005; Arrigo et al., 2008; Catalano et al., 2010; Saggiomo et al., 1998, 2002; Smith and Comiso, 2008; Smith and Gordon, 1997). Ocean color imagery shows that the phytoplankton blooms are spatially extremely variable in the Ross Sea, even when the surface waters are ice free (Reddy and Arrigo, 2006). In fact, the Ross Sea is characterized by a complex array of ecosystems, each contributing differently to the primary production processes at the basin scale (Peloquin and Smith, 2007). Many differences are known to exist between coastal/offshore waters and thickness of the upper mixed layer (UML) relative to the composition of phytoplankton, as well as in the origin and development of the blooms and transfer of C within the food web (Mangoni et al., 2004; Saggiomo et al., 2002; Smith et al., 2010).

Phytoplankton blooms occur during the austral spring and summer, especially in the waters next to marginal ice zones, within polynyas, and on continental shelves (Garrity et al., 2005; Mangoni et al., 2009a; Moore and Abbott, 2000; Reddy and Arrigo, 2006; Saggiomo et al., 2002; Sullivan et al., 1993). Furthermore, a restricted number of functional groups contribute to this productivity and dominance varies at different temporal and spatial scales (Mangoni et al., 2004; Smith et al., 2010). The two dominant functional groups in the Ross Sea, diatoms and haptophytes (mainly Phaeocystis antarctica) have different temporal and spatial distributions, with P. antarctica generally dominating in spring in water columns with deeper vertical mixing and diatoms dominating in more stratified summer conditions (Arrigo et al., 1999; Di Tullio et al., 2003; Goffart et al., 2000; Smith et al., 2014).

http://dx.doi.org/10.1016/j.jmarsys.2015.11.002
0924-7963/© 2015 Elsevier B.V. All rights reserved.