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Opsins—G-protein coupled receptors involved in photoreception— have been extensively studied in the animal
kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evo-
lution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic
data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset,
led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic
resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian
opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new
sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected
reference opsins fromnon-ambulacrarians. Ourfindings corroborate the presence of allmajor ancestral bilaterian
opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclu-
sion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in
marine deuterostomes has been obtained.

© 2015 Published by Elsevier B.V.
1. Introduction

In animals, the prototypical molecules involved in photoreception
and vision are opsin proteins (Terakita, 2005). Opsins are G-protein
coupled receptors (GPCR) that consist of an apoprotein covalently
bound to a chromophore (11-retinal) (Terakita, 2005). The nitrogen
atom of the amino group of residue K296, situated in helix VII, binds
to the retinal molecule through a Schiff-base linkage, forming a double
bond with the carbon atom at the end of this molecule (Hargrave
et al., 1983). Residue K296 is, therefore, crucial for light absorption,
and its presence or absence can be used as a molecular fingerprint to
judge whether or not a GPCR is a bona fide opsin.
.

al., Opsin evolution in the
Recent investigations on opsin phylogeny resolved six distinct
groups present in metazoans: ciliary opsins, rhabdomeric opsins, Go-
opsins, neuropsins, peropsins, and RGR (RPE-retinal G protein-
coupled receptor) opsins (Porter et al., 2012; Feuda et al. 2012;
Terakita et al., 2012). A vast number of opsins are also expressed in
non-ocular tissues (Porter et al., 2012; Koyanagi et al., 2005; Terakita
et al., 2012).

With regard to opsin evolution in the deuterostomes, genomic and
transcriptomic data of a number of chordates have been used to identify
and characterize their opsins (e.g. Holland et al., 2008; Kusakabe et al.,
2001). However, little attention has been paid to Ambulacraria, the sis-
ter group to all extant chordates, (i.e. cephalochordates, urochordates,
and vertebrates, Edgecombe et al., 2011), a key clade to reconstruct
the opsin set of the common ancestor of extant deuterostomes.

The present study integrates opsin sequences from two ambulacrarian
sub-lineages: enteropneust Hemichordata (Harrimaniidae, Spengelidae,
Ambulacraria, Mar. Genomics (2015), http://dx.doi.org/10.1016/
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Ptychoderidae and Torquaratoridae), and the pentameral Echinodermata
comprising five classes (Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea
and Echinoidea).

The phylogenetic relationship of echinoderms and hemichor-
dates as sister groups within Ambulacraria, as shown in Fig. 1,
was already suggested by Metschnikoff (1881), and supported by
Nielsen (2012). The monophyly of Ambulacraria is also well sup-
ported by molecular phylogenetic analyses (Cannon et al., 2014;
Telford et al., 2014). Moreover, Cannon and colleagues showed
that the six hemichordate subgroups cluster into two monophylet-
ic taxa, Enteropneusta and Pterobranchia (Rhabdopleuridae and
Cephalodiscidae). Finally, Fig. 1 conforms to the Asterozoa hypoth-
esis separating the Echinozoa (Echinoidea + Holothuroidea) and
the Asterozoa (Asteroidea + Ophiuroidea), which is now well sup-
ported by recent molecular phylogenies (Cannon et al., 2014;
Telford et al., 2014; O'Hara et al., 2014).

Other than a few structural investigations of eye-like structures in
some asteroid species (e.g. the starfish optic cushion) and in
enteropneust larvae (Brandenburger et al., 1973; Nezlin and Yushin,
2004; Braun et al., 2015), the molecular mechanisms of echinoderm
and hemichordate photoreception remained enigmatic until recently.
Immunohistochemical studies indicated the presence of a putative rho-
dopsin in the asteroid Asterias forbesi and in the ophiuroid Ophioderma
brevispinum (Johnsen, 1997). Subsequently, Raible et al. (2006)
analyzed the ‘rhodopsin-type’ G-protein-coupled receptors family in
an echinoid genome (Strongylocentrotus purpuratus). They predict-
ed six bona fide opsin sequences, four of which were reported inde-
pendently by Burke et al. (2006). Later, Ooka et al. (2010) cloned an
“encephalopsin” orthologue in the sea urchin Hemicentrotus
pulcherrimus. Recently, more opsin sequences have been found in
sea urchins (S. purpuratus; Paracentrotus lividus), starfish (Asterias
rubens), and brittle stars (Ophiocomina nigra, Amphiura filiformis)
(Delroisse et al., 2013, 2014, 2015; Ullrich-Lüter et al., 2011,
2013). These studies highlighted the expression of ciliary and
rhabdomeric opsins in various echinoderm tissues. Also, a large
opsin gene repertoire was identified in the brittle star A. filiformis,
pinpointing notable differences with findings from the previously
published sea urchin genome (Delroisse et al., 2014). However, a
comprehensive description of opsin diversity in echinoderms is
Fig. 1.Ambulacrarian phylogenetic relationships and their adult forms. The Ambulacraria consis
Rhabdopleuridae, Harrimaniidae, Spengelidae, Ptychoderidae and Torquaratoridae, and the pen
Echinoidea. For each class there is a representation of the adult body plan. The numbers represe
Enteropneusta, and the two echinoderm subgroups 3. Eleutherozoa and 4. Crinozoa.
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still lacking and almost nothing is known about hemichordate
opsins.

Therefore, to characterize and describe the diversity of the opsin
family in the Ambulacraria, we conducted a detailed analysis of 6 geno-
mic and 24 transcriptomic sequence databases. This work represents
the first attempt to describe and characterize the evolution of the
opsin “toolkit” in the ambulacrarian lineage. We performed a phyloge-
netic study using the largest dataset of ambulacrarian opsin sequences
to date, including representatives of a previously neglected group,
Hemichordata.
2. Materials and methods

2.1. Data mining

Strongylocentrotus purpuratus opsins belonging to all the paralogous
classes (Supp. File 1)were used as starting query sequences for tBLASTx
against transcriptomic and genomic databases including public
databases (NCBI, JGI, Ensemble, Echinobase (www.echinobase.org/),
BioInformatique CNRS-UPMC (http://octopus.obs-vlfr.fr/) and Genoscope
(http://www.genoscope.cns.fr/spip/Generation-de-ressources.html). The
parameters used across all our tBLASTx searches were the following:
Matrix: Blosum62; gap penalties: existence: 11; extension: 1; neighbor-
ing words threshold: 13; window for multiple hits: 40. Additionally, our
dataset was further enriched using various unpublished genomic and
transcriptomic databases obtained from several independent research
projects (Suppl. Files 1 and 2). This includes transcriptomes from adult
specimens' tissues, such as cuverian tubules and integument from
Holothuria forskali, muscle of Parastichopus californicus, radial nerve from
A. rubens, arms from Labidiaster annulatus, Ophiopsila aranea, Astrotomma
agassizii and Antedon mediterranea, proboscis from Saccoglossus
mereschkowskii and Torquaratorid sp., whole adult body of Leptosynapta
clarki and anterior part of the body from Harrimaniidae sp. and
Schizocardium braziliense. Several other transcriptomes obtained from
embryos or larvae from P. lividus, Heliocidaris erythrogramma, Eucidaris
tribuloides, Parasticopus parvimensis, Saccoglossus kowalevskii and
Ptychodera flava (Suppl. Files 1 and 2) were also screened. The absence
of echinopsin-like sequences in other metazoans was checked using
t of two groups: Hemichordata, bilateral animals subdivided in six clades: Cephalodiscidae,
tameral Echinodermata, comprising: Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea and
nted on the figure correspond to the two hemichordate subgroups: 1. Pterobranchia and 2.
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blast search analysis. The raw predicted opsin sequences used in this
study are listed in the Suppl. File 3 in fasta format.

2.2. Alignment and phylogenetic analyses

Predicted protein alignments were performed with SeaView v4.2.12
(Galtier et al., 1996; Gouy et al., 2010) using the MUSCLE algorithm
(Edgar, 2004). To improve phylogenetic reconstruction, N-terminal
and C-terminal ends were trimmed and the alignment was manually
corrected in order to minimize gaps and eliminate ambiguous and
misaligned regions. Sequences that were shorter than 60 amino acids
were removed to avoid bias. However, these could potentially corre-
spond to true opsins and merit further study.
Fig. 2. Phylogenetic reconstruction of ambulacrarian opsins. 119 opsins from 31 different ambul
based analysis. R-opsins in blue, c-opsins in red, Go-opsins in green, neuropsins in purple, per
interpretation of the references to color in this figure legend, the reader is referred to the web

Please cite this article as: D'Aniello, S., et al., Opsin evolution in the
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Maximum likelihood analyses (ML) of our dataset were conducted
on Michigan State University's High Performance Computing Cluster
using PhyML v3.0 (Guindon and Gascuel, 2003), and nodal support
assessed with 1000 bootstrap replicates is indicated. The alignment is
shown in Suppl. File 4 (phylip format) and Suppl. File 5 (image). A
best-fit model analysis was performed using MEGA6 (following the
AIC criteria) (Tamura et al., 2013; Kumar et al., 2008) and WAG+G+F
amino acid substitution model was found to be the best suited
(Whelan and Goldman, 2001). Three melatonin receptor sequences
from S. purpuratus (Echinodermata) and three from S. kowalevskii
(Hemichordata)were chosen as the best outgroup for the opsin phylog-
eny, as previously proposed by Plachetzki et al. (2010) and Feuda et al.
(2014).
acrarian species cluster in eight highly supported groups in this maximum likelihood (ML)
opsins in yellow and RGR-opsin in orange. Visualization was generated with fig tree. (For
version of this article.)

Ambulacraria, Mar. Genomics (2015), http://dx.doi.org/10.1016/
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2.3. Consensus fingerprint of ambulacrarian opsin groups

Ambulacraria opsins were clustered according to their estimat-
ed position within opsin subfamilies and a multiple alignment of a
35 amino-acid long peptide region, including the 7th transmem-
brane domain with the opsin-specific lysine (K296), was per-
formed with SeaView v4.2.12 for each opsin group supported in
our phylogenetic tree. The selected region spanned residues 286
to 320 of the Rattus norvegicus rhodopsin sequence used as a refer-
ence (Palczewski et al., 2000). The consensus sequence was gener-
ated on the basis of the alignment for each class of ambulacrarian
opsin using Geneious®8.1.5.
3. Results

3.1. Phylogeny and opsin distribution within ambulacrarian groups

Using a collection of both genomic and transcriptomic data (see
Materials and methods and Suppl. File 2 for details), a final set of 119
protein sequences, representing 31 ambulacrarian species, was generat-
ed for our phylogenetic reconstruction, which included 6 outgroup se-
quences and 6 human reference opsin sequences (Suppl. Files 1 and 3
for raw predicted protein sequences). The trimmed opsin alignment is
shown in the Suppl. File 5 (see Suppl. File 4 for the alignment phylip
file). We employed maximum likelihood using the WAG+G+F model
with melatonin receptors as an outgroup. Canonical opsin groups are
well supported in our analysis (Fig. 2), demonstrating the presence of
a complex opsin toolkit in Ambulacraria.
Fig. 3. Consensus sequences of different opsin groups. Graphical representations of opsin amin
protein G linkage site. The 7th transmembrane domain is highlighted in green in the tridimensio
regions including the opsin-specific lysine residue and the “NPxxY(x)6F”pattern. The lysine resid
— is present in position 10. The pattern “NPxxY(x)6F” (position 302–313 of the R. norvegicus rh
probability to find this specific amino acid for the considered position. Amino acid patterns of

Please cite this article as: D'Aniello, S., et al., Opsin evolution in the
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Interestingly, according to our data, two novel groups of opsinswere
found, which we have named echinopsin-A and echinopsin-B groups.
Ad hoc BLAST searches against metazoan online database (NR, NCBI)
clearly indicated the absence of these two opsin types outside the echi-
noderm lineage (Suppl. Fig. 6). The previously identified Sp-opsin2 and
Sp-opsin5 belong to echinopsins-A and echinopsins-B, respectively
(Raible et al., 2006).

A complete opsin profile including at least one representative of
each prototypical opsin group (opsin 1-8) was detected in the sea
urchin S. purpuratus, but not in Lytechinus variegatus or P. lividus. The
genomes of the latter two species have not yet been comprehensively
sequenced and annotated, and therefore some opsin genes may be
missing due to incomplete sequence coverage. With the exception of
echinopsin-B, a complete opsin profile was found in the genome
sequence data of the starfish Patiriaminiata. The starfish A. rubens radial
nerve transcriptome also contained several opsins, including ciliary,
Go-, RGR-opsins.

Surprisingly, rhabdomeric and Go-opsins do not seem to be present
in hemichordates in our dataset. However, this requires confirmation
throughmore extensive taxonomic sampling of hemichordate sequence
data because, at present, only one hemichordate genome has been fully
sequenced (S. kowalevskii). In several opsin groups we observed
lineage-specific duplications: two c-opsins in P. miniata and A. rubens;
five neuropsins in S. kowalevskii; four r-opsins in L. annulatus and six
r-opsins in A. filiformis; two Go-opsins in the echinoids L. variegatus,
S. purpuratus and H. erythrogramma. Nevertheless, some of these mole-
cules present a short overlapping sequence, and therefore we cannot
exclude that they could be part of unique genes. In this case, the number
of genes would have been overestimated.
o acid patterns within the multiple alignments of the 7th transmembrane domain and the
nal representation of a typical opsin receptor. Alignment is limited to the highly conserved
ue involved in the Schiff base formation - equivalent to K296 of theR. norvegicus rhodopsin
odopsin sequence) is present in position 17–28. The size of each amino acid indicates the
Melatonin receptors used as an outgroup in the phylogenetic analysis is also presented.

Ambulacraria, Mar. Genomics (2015), http://dx.doi.org/10.1016/
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3.2. Alignment of the transmembrane domain and opsin fingerprint

In order to build a consensus fingerprint to distinguish the var-
ious ambulacrarian opsin groups, the 7th transmembrane domain
and C-terminal tail region of our sequence dataset were aligned
and a graphical representation was generated (Fig. 3). All se-
quences were characterized by the general structure of G protein-
coupled receptors (GPCRs) comprising seven transmembrane
(TM) domains. Numerous residues characteristic of opsins are
present in the opsin sequences of Ambulacraria. However, as sever-
al sequences are partial, not all characteristic residues could be de-
tected in all sequences. Most of the opsin sequences also contained
the highly conserved lysine residue (equivalent to K296 of the
R. norvegicus rhodopsin) critical for Schiff base linkage formed
with retinal, except three sea-urchin peropsins (Sp-opsin 6,
Pl-opsin 6, Lv-opsin 6) in which it is substituted by a glutamate
(E). The dipeptide NP (position 302-303 of the R. norvegicus rho-
dopsin sequence) is also highly conserved among all the subfam-
ilies except in peropsins (N/HP) and RGR-opsins, which show
divergence in these residues (also rhabdomeric opsins to a lesser
extent). Amino-acid conservation for each opsin group from our
phylogenetic analysis is shown in Fig. 3. Ambulacrarian c-opsins,
r-opsins and echinopsins-A displayed a highly conserved tyrosine
(Y306). Conversely, the histidine (H310) appears distinctive
of the ambulacrarian r-opsins (Fig. 3) and r-opsins in general
Fig. 4.Opsin distributionwithin the investigated ambulacraria species. For each species the num
were found are not reported in the table (for additional informations see Suppl. File 1). Specie

Please cite this article as: D'Aniello, S., et al., Opsin evolution in the
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(human melanopsin, octopus rhodopsin and Drosophila Rh1-
opsin). In our dataset the tripeptide SSS, positioned at residues
309-402 of the reference protein, is a distinctive feature of
ambulacrarian Go-opsins.

These representations will be particularly useful in future studies in
support of phylogenetic analysis to assign novel, unknown sequences to
lineage-specific opsin groups.

4. Discussion

Our phylogenetic analyses showed ambulacrarian opsin sequences
to be represented in all six prototypical bilaterian opsin groups: ciliary
opsins, rhabdomeric opsins, neuropsins, Go-opsins, peropsins and
RGR-opsins (Fig. 4). Even though ciliary opsins, peropsins and RGR-
opsins are in general well supported in the literature, a relatively poor
nodal support was obtained for these groups using our ambulacraria
opsin data set. In addition we confirmed the presence of two novel
echinoderm-specific opsin groups, which we have named echinopsins
(echinopsin-A and echinopsin-B). These novel groups of opsins, which
were found only in Echinoidea, Ophiuroidea and Asteroidea, respective-
ly cluster as a sister group of all other opsins and as a sister group of all
opsins except echinopsins-A and ciliary opsins (Fig. 4). A deeper analy-
sis of these groups of proteins, including more hemichordate opsin
sequences, is needed in order to determine if they represent an echino-
derm or ambulacrarian novelty. Clear orthologs of echinopsin-A and
ber of opsin belonging to classical groupswere reported. Those species forwhich noopsins
s for which the genome data are available are in bold.

Ambulacraria, Mar. Genomics (2015), http://dx.doi.org/10.1016/
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echinopsin-B where not encountered in any metazoan genome (exept
echinoderms), as shown in Suppl. Fig. 6. Nevertheless, we cannot state
conclusively that these represent lineage-specific clades because new
genomes could reveal that echinopsin-A and echinopsin-B are indeed
not restricted to echinoderms or ambulacrarians.

Our analysis failed to reveal a rhabdomeric opsin (r-opsin) in hemi-
chordates. The absence of such anopsin type is surprising becausemany
enteropneust tornaria larvae possess eyespots that bear photoreceptors
with clear microvillar surface enlargement (Brandenburger et al., 1973;
Nezlin and Yushin, 2004; Braun et al., 2015). So far, photoreception in
microvillar photoreceptor cell types has been demonstrated to general-
ly deploy opsins of the so-called rhabdomeric type (r-opsins), although
co-expression of other opsin types in microvillar/rhabdomeric photore-
ceptors has been shown in recent studies (Randel et al., 2013). Howev-
er, although our analysis reveals no such opsin in any of the examined
enteropneust species, it should be noted that genomic information is
only available from the direct developer S. kowalevskii, which does not
have a larval (tornarian) stage in its life cycle. Moreover, most of hemi-
chordate transcriptomes in our study were generated using adult
tissues; it is therefore possible that the absence of r-opsin in this
group of animals is due to a limitation of data availability from this
understudied group of animals.

In contrast to the lack of r-opsins in enteropneusts, our analyses
showed several cases of opsin gene duplication. Obviously in some
instances the locus of duplication prompted a large expansion of
the gene family, as is the case of the five neuropsins found in
S. kowalevskii, and the six rhabdomeric opsins in A. filiformis, with
the latter previously described by Delroisse et al. (2014). However,
the fragmentary information about these duplicates makes it diffi-
cult to predict the exact number of functional opsin proteins in
Ambulacraria. Whether or not these duplicated genes have sub-
functionalized roles should be experimentally investigated by
knock-out or silencing experiments.

Until recently, under-representation of many taxonomic groups in
comparative studies of photoreceptor evolution has hidden the real
extent of opsin diversity (Porter et al., 2012; Feuda et al., 2014). As
more opsins have been characterized, these sequences have been classi-
fied into narrow pre-defined groups (e.g. Group 4 opsins), implying
theoretical functional similarities that might not always be correct
(Shichida and Matsuyama, 2009). At present, however, the rapidly in-
creasing availability of entire genomes and transcriptomes provides a
large number of sequences for investigating the evolution and function-
al diversity of the opsin family in greater detail. Likewise, our phyloge-
netic analysis of ambulacrarian opsins provides a better understanding
of opsin evolution, nevertheless future metazoan genomes could
certainly help to draw a more definitive evolutionary scenario.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.margen.2015.10.001.
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